ELLIOTT

-

Volume 2: PROGRAMMING INFORMATION
Part 2: PROGRAM DESCRIPTIONS
Section 12: QSIN (B. 4)
Contents
Chapter 1: DESCRIPTION

1. 1 Introduction 1
1.1.1 Purpose 1
1.1.2 Form of Distribution 1
1.1.3 Method of Use 1
1.1.4 Accuracy 1
2. 2 Functions 1
1.2.1 Number Type 1
1.2.2 Entry and Exit 2
1.2.3 Identifiers 2
3. 3 Method Used 2
4. 3. 1 Notation 2
1. 4 Time Taken 3
1.5 Store Used 3

Chapter 1: DESCRIPTION

1. 1 INTRODUCTION.

1.1.1 Purpose.

To calculate
$\frac{1}{2} \sin \pi x$
and $\frac{1}{2} \cos \pi x$
where x is the fraction in the accumulator.

1. 2. 2 Form of Distribution.

The program is distributed as a machine code tape for input by T2 or SIR.
1.1.3 Method of Use.

The routine is assembled as a block of the user's program and used as a sub-routine. It may be run at any program level and in any store module.

1.1.4 Accuracy.

The maximum error is $2^{-15}(\bumpeq .00003)$

1. 2 FUNCTIONS.

1.2.1 Number Type.

The operand, x, and the result must be treated by the programmer as pure fractions.

To enable this to be done QSIN calculates
$\frac{1}{2} \sin \pi x$
and $\quad \frac{1}{2} \cos \pi x$
Note, therefore that on entry, the accumulator holds the value of an angle as a fraction of π radians (180°).
2. 2. 12.

> 1.2.2 Entry and Exit.
> Entry is made by
> (for assembly by SIR) (for translation by T2).
> 11 QSIN 8 QSIN+1
> $110 ; \mathrm{N}$
> 8 1;N
> Where N is the number of the block,

On exit
$\frac{1}{2} \sin \pi \mathrm{x}$ is in the accumulator and in QSIN $+67(67 ; N)$
$\frac{1}{2} \cos \pi x$ is in $\operatorname{QSIN}+68(68 ; N)$

1.2. 3 Identifiers.

QSIN must be declared as a global identifier in all blocks of the users program which refer to it.

On the library tape, a mnemonic label and identifier list are separated from the coding by several inches of blank tape: the mnemonics must not be loaded into the tape reader if the tape is to be translated by T2.

1. 3 METHOD USED.

1. 3. 1 Notation.

On entry, the accumulator contains a
fraction, x.

$$
x=\frac{1}{2}(n+y)
$$

such that n is an integer and $-\frac{1}{2} \leq \mathrm{y}<\frac{1}{2}$

If

$$
\begin{aligned}
& Z=\tan (\pi y / 4) \\
& S=\frac{1}{2} \sin (\pi y / 2) \\
& C=\frac{1}{2} \cos (\pi y / 2)
\end{aligned}
$$

2. 2. 12.

a) The program computes

$$
z=\frac{4 y}{4-y^{2}} P\left(y^{2}\right)
$$

Where P is a power series which is rapidly convergent when y is in the specified range.
b)

$$
\begin{aligned}
& S=\frac{Z}{1+Z^{2}} \\
& C=\frac{1}{2}\left\{\frac{1-Z^{2}}{1+Z^{2}}\right\}
\end{aligned}
$$

and the values are found as shown in the table below:

n	$\frac{1}{2} \sin \pi x$	$\frac{1}{2} \cos \pi x$
-2	$-S$	$-C$
-1	$-C$	S
0	S	C
1	C	$-S$

1. 4 TIME TAKEN.
2. 4-1.8 milliseconds.
3. 5 STORE USED.

74 consecutive locations, and the appropriate B' register。

