ELLIOTT Global State of the st

Volume 2: PROGRAMMING INFORMATION
Part 2: PROGRAM DESCRIPTIONS

Section 12: QSIN (B. 4)

Contents

							rage
Chapter 1:	DESC	RIPTION					
•	1. 1	Introduction	 			 	1
		1.1.1 Purpose	 			 	1
		1.1.2 Form of Distribution	 			 	1
		1.1.3 Method of Use	 		• 9	 	1
		1.1.4 Accuracy	 			 	1
	1.2	Functions					1
		1. 2. 1 Number Type	 			 	1
		1. 2. 2 Entry and Exit	 	. ·		 	2
		1.2.3 Identifiers · · · · · ·	 			 	2
	1.3	Method Used	 			 	2
		1. 3. 1 Notation					2
	1.4	Time Taken					3
	1.5	Store Used					3

Chapter 1: DESCRIPTION

1.1 INTRODUCTION.

1.1.1 Purpose.

To calculate

 $\frac{1}{2}$ sin πx

and $\frac{1}{2}\cos\pi x$

where x is the fraction in the accumulator.

1.1.2 Form of Distribution.

The program is distributed as a machine code tape for input by T2 or SIR.

1.1.3 Method of Use.

The routine is assembled as a block of the user's program and used as a sub-routine. It may be run at any program level and in any store module.

1.1.4 Accuracy.

The maximum error is 2^{-15} (\triangle . 00003)

1.2 FUNCTIONS.

1.2.1 Number Type.

The operand, x, and the result must be treated by the programmer as pure fractions.

To enable this to be done QSIN calculates

 $\frac{1}{2}$ sin π x

and $\frac{1}{2}\cos\pi x$

Note, therefore that on entry, the accumulator holds the value of an angle as a fraction of π radians (180°).

1. 2. 2 Entry and Exit.

Entry is made by

(for assembly by SIR)

(for translation by T2).

11 QSIN 8 QSIN+1

11 0;N 8 1;N

Where N is the number of the block,

On exit

$$\frac{1}{2}$$
 sin π x is in the accumulator
and in QSIN + 67 (67;N)
 $\frac{1}{2}$ cos π x is in QSIN + 68 (68;N)

1.2.3 Identifiers.

QSIN must be declared as a global identifier in all blocks of the users program which refer to it.

On the library tape, a mnemonic label and identifier list are separated from the coding by several inches of blank tape: the mnemonics must not be loaded into the tape reader if the tape is to be translated by T2.

1.3 METHOD USED.

1.3.1 Notation.

On entry, the accumulator contains a

fraction, x.

$$x = \frac{1}{2}(n + y)$$

such that n is an integer and $-\frac{1}{2} \leq y < \frac{1}{2}$

If
$$Z = \tan (\pi y/4)$$

 $S = \frac{1}{2} \sin (\pi y/2)$
 $C = \frac{1}{2} \cos (\pi y/2)$

a) The program computes

$$Z = \frac{4y}{4 - y^2} P(y^2)$$

Where P is a power series which is rapidly convergent when y is in the specified range.

$$S = \frac{Z}{1 + Z^2}$$

$$C = \frac{1}{2} \left\{ \frac{1 - Z^2}{1 + Z^2} \right\}$$

and the values are found as shown in the table below:

n	½ sin π x	½ cos π x				
- 2	- S	- C				
-1	- C	S				
0 .	S	С				
1	C	- S				

1.4 TIME TAKEN.

1.4 - 1.8 milliseconds.

1.5 STORE USED.

74 consecutive locations, and the appropriate B-register.